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Abstract 

Heavy metal contents and magnetic properties (χlf、χfd%) in topsoil of 123 urban sites in Baoshan District, 

Shanghai were detected to study the significant correlations between heavy metals and χlf. The results 

indicate that spatial variation of χlf in the urban topsoil is significant: the highest χlf of 1127×10
-8

m
3
/kg was 

observed in industrial soil while the lowest of 18×10
-8

m
3
/kg in agricultural soil. Significant correlations 

between χlf and χfd% implies the soil is dominated by anthropogenic multi-domain (MD) and stable single 

domain (SSD) grains. A close relationship between χlf and heavy metal contents in the topsoil is found. χlf 

values in the topsoil are excellently correlated with Zn, Cr, Mn, Cu, Pb, Cd and Fe, with the coefficients (R) 

of 0.665, 0.416, 0.607, 0.533, 0.639, 0.520 and 0.503, respectively. Those in industrial soil, are roadside and 

topsoil are also significantly correlated with heavy metals; but those in the agricultural soil do not reach the 

significant level. It indicated that the magnetic techniques can be used for monitoring soil pollution in 

Shanghai. 
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Introduction 

Recently, there is a growing interest in using magnetic techniques for monitoring environmental pollution 

(Wonnyon et al. 2009; Kim et al. 2007). Statistic assessment demonstrates by analyzing susceptibility 

values, heavy metal concentrations in large soil data set (Ruiping et al. 2006; Blundell et al. 2009; Monika et 

al. 2007; Tetyana et al. 2004) showed anthropogenic influence on the magnetic properties of soils. Many 

studies (Lu et al. 2006; 2008) have reported excellent relationships between χlf and the contents of some 

heavy metals in industrial/urban soils. Soils near urban and industrial zones have an increased magnetic 

susceptibility (Thompson and Oldfield 1986; Tadeusz et al. 2007; Blundell 2009; Xia 2008; Xie 2001). 

Magnetic measurements show that the main magnetic components in urban topsoil are multidomain grains of 

ferrimagnetic minerals, which are introduced by industrial activities(Flanders 1994), automobile 

exhaust(Matzka 1999; Muxworthy 2001; Shilton 2005; Maher 2008) and deposition of atmospheric 

particulates(Kim et al. 2007). 
 

Methods 

Close to the Yangtze River on the north, Baoshan District is the traditional industrial base in Shanghai as 

well as the main vegetable base. Soil samples were selected considering diversities of land utilization 

including agricultural soils (31), industrial soils (30), road side (31) and residential areas (31). 
 

About 8 g. soil samples (<2.0 mm) were packed, and magnetic susceptibility was measured at low (0.47 

kHz) and high (4.7 kHz) frequency by a Bartington MS2 dual frequency sensor. χfd% was calculated from 

the percentage of (χlf −χhf)/χlf. Soils (0.154 mm) were digested with a mixture solution of concentrated 

HNO3-HF-HClO4. Cu, Zn, Pb, Cr, Mn and Ni were analyzed by air–acetylene flame atomic absorption 

spectrophotometry (AAS), Cd by the graphite furnace AAS, while Fe (Fed) was determined according to o-

phenonthroline spectrophotometry. 
 

Results 

Spatial variation of heavy metal accumulation in the urban topsoil is observed (Table.1). The χlf value ranged 

from 18×10
-8

m
3
/kg(agricultural soils) to 1127×10

-8
m

3
/kg(industrial soils) with the mean value of 148×10

-

8
m

3
/kg. The mean concentrations of χlf in the agricultural soils and industrial soils were 52×10

-8
m

3
/kg and 

239×10
-8

m
3
/kg respectively. It was measured that χfd of urban topsoil is less than 4%. The mean χfd value of 

industrial zones is 1.8%, which is similar to agricultural areas with a mean value of 1.8%. The value of χlf is 

increased in the order of industrial area> roadside > residential area> agricultural area, and in the order of 

agricultural area> roadside > residential areas> industrial area for χfd%. 
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Table 1.  Statistic values of χlf and χfd% in the topsoil of Baoshan District, Shanghai. 

χlf（10
-8

m
3
/kg） χfd% Area 

max min mean max min mean 

Baoshan District 1127 18 147 10.2 0.02 1.6 

Industrial area 1127 23 239 3.1 0.02 1.3 

Roadside 629 19 185 10.2 0.11 1.6 

Residential area 315 44 113 4.0 0.02 1.5 

Agriculture area 167 18 52 8.2 0.26 1.8 

 

The correlation between χlf and χfd% of Baoshan District topsoil(Table. 2) reached the significant level 

(p<0.05), while industrial areas reached extremely significant level(p<0.01) with low χfd%(<3%), further 

indicating the pedogenic SP grains contribute little to the magnetic enhancement of the urban topsoil and 

dominant MD and SSD grains. In this study, χfd% of the agricultural soils does not correlate well with χlf , 

which may attributed to the fact that soil in Baoshan District was mostly derived from the tidal sediment of 

the Yangtze River Estuary, and belongs to Entisols because of its young age and weak pedogenesis.  

 
Table 2.  Correlation coefficient (R) for relationship between χlf and χfd% in the topsoil of Baoshan District, 

Shanghai. 

 Baoshan District Agriculture area Roadside Residential area Industrial area 

n 123 31 30 31 31 

R 0.228* 0.314 0.024 0.350 0.559** 
**

 p<0.01; 
*
p<0.05 

 

χlf values in the topsoil are excellently correlated with Zn, Cr, Mn, Cu, Pb, Cd and Fe, with the coefficients 

(R) of 0.665, 0.416, 0.607, 0.533, 0.639, 0.520 and 0.503, respectively(Table. 3). It was found that heavy 

metal contents (exclude Cr) of the industrial topsoil (Figure1) are positively significantly correlated with the 

corresponding χlf values (R[31,0.01]=0.456).Those in the roadside are also extremely significantly correlated 

with Zn, Cr, Mn, Cu, Pb and Fe(p<0.01), and significant correlated with Cd (p<0.05); but the correlation 

between χlf and heavy metals in the agricultural soil (Figure 2) does not reach a significant level. Industrial 

and vehicular emissions often contain magnetic particles and produce many magnetic aerosols in the urban 

environment (Hay et al. 1997; Shu et al. 2001). Those of residential areas fall in between. The significant 

differences between the industrial and agricultural topsoil suggest that the extra magnetic materials 

accumulated in the urban topsoil are not inherited from the parent materials, but stem from anthropogenic 

activities. 

 
Table 3 Correlated coefficients between χlf and heavy metal contents in the topsoil of Baoshan District, Shanghai. 

Area n Zn Cr Mn Cu Pb Cd Fe 

Baoshan District 123 0.665** 0.416** 0.607** 0.533** 0.639** 0.520** 0.503** 

Agricultural area 31 0.074 0.025 0.237 0.037 0.186 0.264 0.158 

Roadside  30 0.641** 0.537** 0.651** 0.636** 0.544** 0.449* 0.531** 

Residential area 31 0.512** 0.524** 0.543** 0.305 0.537** 0.395* 0.281 

Industrial area 31 0.727** 0.338 0.592** 0.783** 0.762** 0.724** 0.525** 
**

 p<0.01; 
*
p<0.05 

 

Conclusion 

In this work, we found that χlf of the urban topsoil in Baoshan District are extremely enhanced with the 

highest observed in industrial areas and the lowest in agricultural areas. χfd % of the topsoil is less than 4%, 

show that the main magnetic components in urban topsoil are multidomain grains of ferrimagnetic minerals, 

which are introduced by industrial activities, automobile exhaust and deposition of atmospheric particulates. 

The enrichment of magnetic particles and heavy metals in the topsoil is considerably obvious in industrial 

and roadside areas, while the correlation between χlf and heavy metals in the agricultural soil does not reach 

the significant level. The enrichment of residential areas falls in between. Thus it’s possible to use magnetic 

technique as a simple, rapid, and nondestructive tool for the assessment of heavy metals contamination in 

urban. 
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Figure1.  Correlation between χlf and contents of heavy metals  in the topsoil of industrial areas in Baoshan 

District, Shanghai. 
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Figure2.  Correlation between χlf and contents of heavy metals in the topsoil of agricultural areas in Baoshan 

District, Shanghai. 
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